DCAD:a Dual Clustering Algorithm for Distributed Spatial Databases  被引量:15

DCAD: a Dual Clustering Algorithm for Distributed Spatial Databases

在线阅读下载全文

作  者:ZHOU Jiaogen GUAN Jihong LI Pingxiang 

机构地区:[1]State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 229 Luoyu Road, Wuhan 430079, China.

出  处:《Geo-Spatial Information Science》2007年第2期137-144,共8页地球空间信息科学学报(英文)

基  金:Funded by the National 973 Program of China (No.2003CB415205);the National Natural Science Foundation of China (No.40523005, No.60573183, No.60373019);the Open Research Fund Program of LIESMARS (No.WKL(04)0303).

摘  要:Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clustering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted clustering is obtained based on those features fective and efficient. Second, local features from each site are sent to a central site where global Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient.Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clus- tering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted. Second, local features from each site are sent to a central site where global clustering is obtained based on those features. Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient.

关 键 词:distributed clustering dual clustering distributed spatial database 

分 类 号:P208[天文地球—地图制图学与地理信息工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象