基于遗传算法的双阈值小波去噪方法研究  被引量:11

Research of wavelet de-noising method by double-threshold based on genetic algorithm

在线阅读下载全文

作  者:张荣祥[1] 李正强[1] 郑世杰[1] 

机构地区:[1]南京航空航天大学智能材料与结构研究所,江苏南京210016

出  处:《传感器与微系统》2007年第6期20-22,25,共4页Transducer and Microsystem Technologies

摘  要:在讨论小波阈值去噪的软阙值、硬阈值方法基础上,提出了一种利用遗传算法对上下阈值T1和T2进行优化,并通过双阈值进行阈值量化的新方法,该方法不仅能有效地克服硬阈值处理方法可能引起的伪吉布斯现象和软阈值处理方法的恒定偏差的不足,还能有效地从高频信号中去除噪声引起的高频干扰信号。仿真实验结果表明:该方法在信号去噪中比传统的硬阈值和软阈值方法有更高的信噪比和更小的均方误差,可以较好地恢复信号。On the. basis of discussing soft-thresholding and hard-thresholding methods for wavelet de-noising, a double-threshold is proposed and the genetic algorithm is used to optimize two thresholds T1 and T2. This new method can effectively overcome the Psuedo-Gibbs phenomenon of hard-thesholding method and intrinsic bias of soft-thresholding one. In addition, it can effectually remove high-frequency interfering signal arose out of noise from high-frequency signal. Simulated experiment results demonstrate that this new de-noising method can achieve higher signal to noise ratio (SNR) gain and lower mean square error(MSE) than traditional soft-thresholding and hard-thresholding methods in signal de-noising,and restores signal well.

关 键 词:小波去噪 双阈值 阈值规则 遗传算法 

分 类 号:TN011[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象