检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯国强[1] 孙军红[1] 邹强[1] 李伟仁[1]
出 处:《火力与指挥控制》2007年第6期74-76,共3页Fire Control & Command Control
摘 要:在机载红外搜索跟踪系统被动定位研究中,针对扩展卡尔曼滤波算法要求先验的噪声统计及存在系统观测模型线性化误差影响滤波精度的特点,利用两步滤波算法并结合Sage-Husa噪声估计器构建了适用于机载IRSTS被动定位特点的自适应两步滤波算法模型,算法不仅实时在线地估计了观测噪声的统计特性,而且避免了观测模型线性化误差。仿真结果表明,在完全相同的初始条件下,自适应两步滤波算法对目标运动参数的估计结果明显优于扩展卡尔曼滤波,从而提高了机载IRSTS被动定位的精度。Aiming at the speciality of transcendental noise statistics and linearization error ot measurement model effecting on filter precision during extended kalman filter with applications to passive location of IRSTS, we constructed adaptive two-step filter algorithm model for passive location of IRSTS by means of integrating two-step filtering algorithm with Sage-Husa noise statistics estimator. It not only approximated realtime measurement subjunctive noise statistics but also avoided linearization error of measurement model. The calculated results of our simulation experiment show the advantage of adaptive two-step filtering algorithm under the same condition. The algorithm enhanced the filtering precision of passive location by IRSTS.
关 键 词:红外搜索跟踪系统 被动定位 扩展卡尔曼滤波 自适应两步滤波算法 噪声估计器
分 类 号:TN953.7[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.68.176