检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学武汉光电国家实验室,武汉430074
出 处:《微纳电子技术》2007年第6期312-318,共7页Micronanoelectronic Technology
基 金:国家自然科学基金项目(10472036)
摘 要:采用电解质溶液离子输运的Nernst-Planck方程、液体运动的Navier-Stokes方程和电场的Poisson方程研究了微扩散管的双电层、电解质流动电位势和电黏性效应。采用有限体积法分析了微扩散管流动电位势、流动电阻力、流量损失和流动速度形态变化。结果表明,与均匀截面微通道不同的是,流动电位势在微扩散管内呈非线性增长,流动电阻力沿微通道截面扩张方向下降。在微扩散管的横截面上也会产生流动电位势和电阻力。在微收缩管流动的电黏性效应和流量损失率比微扩散管流动略大。论文数值解给出流动电位势从瞬态到稳态发展过程的时间尺度特征,并分析了微通道扩散角对电黏性效应产生的微通道流量损失率。Using Nernst-Planck equation for ion transport of electrolyte solution, Navier-Stokes equation for liquid flows and Poisson equation for electric field, electric double layers, flow-induced streaming potential and electro-viscous effects in a finite micro-diffuser were studied. Finite element method was used to investigate streaming potential, electric resistance of flow, flow rate loss and velocity profile variation in micro-diffuser. The results indicate that in contrast to a section-uniform microchannel, the streaming potential grows non linearly, the electric resistance of flow decreases in micro-diffuser. Streaming potential and electric resistance of flow creates in cross-section of channel. The electroviscosity of flow and flow rate loss in narrowing direction is slightly larger than in expanding direction of micro-diffuser. The numerical solutions represent time evolution behavior of streaming potential from transient state to steady state. The effect of expanding angle of the micro-diffuser on flow rate loss due to electro viscosity is also analyzed.
分 类 号:TN432[电子电信—微电子学与固体电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117