检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢厚清[1] 陈亮[1] 宋以胜[1] 吴值民[1] 邹赟波[1]
机构地区:[1]解放军理工大学工程兵工程学院,江苏南京210007
出 处:《解放军理工大学学报(自然科学版)》2007年第3期250-253,共4页Journal of PLA University of Science and Technology(Natural Science Edition)
摘 要:为了有效克服遗传算法收敛速度慢和易陷入局部极值点的缺点,提出了一种遗传算法交叉算子的改进算法,即采用自适应交叉概率,给不相关大的个体赋予较大的被选概率的配对方式进行交叉操作;在适应度比例轮盘赌的基础上辅以父子竞争的选择操作。二元多峰值Schaffer函数优化的仿真实例结果表明:与保留最优个体策略的遗传算法相比,改进算法能有效减少无效的交叉操作,收敛速度和全局搜索能力都得到了较大提高,其平均收敛代数和收敛到最优解的概率都优于保留最佳个体策略的遗传算法。In order to effectively overcome the disadvantages of traditional Genetic Algorithm which converge slowly and easily run into local extremism, an improved crossover operator of genetic algorithms was proposed. This operator used the autoadaptive crossover probability and entrusted individual having big irrelevance index with a big elected probability to carry on the crossing operation; The two generations competitive selective operator was designed to improve the traditional genetic algorithm based on roulette. In a simulative example of multi-peaks function, the proposed method can reduce useless crossover effectively and thus the convergence speed and the search capability are greatly improved when compared with the elitist reserved genetic algorithm that keeps best strategy. As a result, the average convergence generations and the probability of getting optimal result are superior to the elitist reserved genetic algorithm.
分 类 号:O221[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222