检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:He Chu Xia Guisong Sun Hong
机构地区:[1]Electronic Information School, Wuhan Univ., Wuhan 430079, P.R. China
出 处:《Journal of Systems Engineering and Electronics》2007年第2期210-216,共7页系统工程与电子技术(英文版)
基 金:the National Nature Science Foundation of China (60372057).
摘 要:To study the scene classification in the Synthetic Aperture Radar (SAR) image, a novel method based on kernel estimate, with the Maxkov context and Dempster-Shafer evidence theory is proposed. Initially, a nonpaxametric Probability Density Function (PDF) estimate method is introduced, to describe the scene of SAR images. And then under the Maxkov context, both the determinate PDF and the kernel estimate method axe adopted respectively, to form a primary classification. Next, the primary classification results are fused using the evidence theory in an unsupervised way to get the scene classification. Finally, a regularization step is used, in which an iterated maximum selecting approach is introduced to control the fragments and modify the errors of the classification. Use of the kernel estimate and evidence theory can describe the complicated scenes with little prior knowledge and eliminate the ambiguities of the primary classification results. Experimental results on real SAR images illustrate a rather impressive performance.To study the scene classification in the Synthetic Aperture Radar (SAR) image, a novel method based on kernel estimate, with the Maxkov context and Dempster-Shafer evidence theory is proposed. Initially, a nonpaxametric Probability Density Function (PDF) estimate method is introduced, to describe the scene of SAR images. And then under the Maxkov context, both the determinate PDF and the kernel estimate method axe adopted respectively, to form a primary classification. Next, the primary classification results are fused using the evidence theory in an unsupervised way to get the scene classification. Finally, a regularization step is used, in which an iterated maximum selecting approach is introduced to control the fragments and modify the errors of the classification. Use of the kernel estimate and evidence theory can describe the complicated scenes with little prior knowledge and eliminate the ambiguities of the primary classification results. Experimental results on real SAR images illustrate a rather impressive performance.
关 键 词:Image classification Synthetic aperture Radar (SAR) Dempster-Shafer theory Kernel estimate.
分 类 号:TN95[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.120.156