检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘美俊[1]
机构地区:[1]湖南工程学院电气与信息工程系,湖南省湘潭市411101
出 处:《中国电机工程学报》2007年第19期87-92,共6页Proceedings of the CSEE
摘 要:针对一类复杂非线性系统,提出一种模糊神经网络(FNN)控制方案。系统中采用模糊神经网络控制器和神经网络辨识控制器相结合的结构,介绍一种改进的学习算法,对学习公式进行推导,利用改进的遗传算法来优化已经获得的隶属度函数,并结合误差补偿以提高控制精度。同时将混沌机制引入常规BP算法。利用混沌机制固有的全局游动,逃出权值优化过程中存在的局部极小点,解决了网络训练易陷入局部极小点的问题。用该方法对某非线性动态系统进行辨识和控制,仿真结果表明控制精度和实时性优于常规模糊控制器。A fuzzy neural network (FNN) control scheme for a class of complicated nonlinear systems was presented. In this scheme it has the structure that combines a FNN controller with neural network identification controller, a new improved learning algorithm was derived theoretically. Based on the error-compensation method and using the modified genetic algorithm for optimizing the membership functions, the accuracy of the algorithm was improved. Then chaotic mechanism was introduced to normal BP algorithm, and the problem of local limit value for network was solved by using global moving characteristic of chaotic mechanism. The simulation results show that this design has a better performance than normal fuzzy controller.
分 类 号:TM76[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28