检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周忠祥[1] 姜永远[1] 孙秀冬[1] 李焱[1] 赵桦[1] 许克彬[1] 万秋玉[2]
机构地区:[1]哈尔滨工业大学应用物理系 [2]哈尔滨理工大学物理教研室
出 处:《光学学报》1997年第6期710-716,共7页Acta Optica Sinica
基 金:山东大学晶体材料研究所开放实验室资助
摘 要:应用微扰展开法于“跳跃模型”,给出了空间电荷场前三阶分量随时间、外加电场等变化的解析表达式。同时讨论了外加电场对各阶空间电荷场建立的影响。当扩散场与外加电场可比拟时,外加电场对空间电荷场的影响不大;随着空间电荷场阶数的提高,其达到最大饱和值所需的外加电场越小。在外加电场作用下,空间电荷场各阶分量随时间呈振荡衰减,直到达到饱和。外加电场越大,振荡越强烈,周期越短。在考虑高阶分量的贡献后。The analytic expressions for the first three higher order harmonics of the space charge field versus time and the applied field are presented by using perturbative expanding to “the hopping model” of Feinberg. The results are valid for arbitrary strengths of characteristics′ fields in the photorefractive materials with arbitrary values of the modulation depths. We aslo study the effect of the applied field on recording of the first three higher order harmonics of the space charge field. It shows that the effect on the space charge field is very small at case of large diffusion field. The applied field for the maximum saturation values becomes small with the order increasing. With an applied field, higher order harmonics of the space charge field show oscillating attenuation versus time until to reach saturation state. The oscillating is strong as the applied field increases with shorter oscillating period. The oscillating amplitude of the space charge field increases while the contribution of the higher order harmonics are considered.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31