z^(1/2)-Ideals and z°^(1/2)-Ideals in C(X)  

z^(1/2)-Ideals and z°^(1/2)-Ideals in C(X)

在线阅读下载全文

作  者:F.AZARPANAH R.MOHAMADIAN 

机构地区:[1]Department of Mathematics,Chamran University,Ahvaz,Iran,Institute for Studies in Theoretical Physics and Mathematics,Tehran,Iran

出  处:《Acta Mathematica Sinica,English Series》2007年第6期989-996,共8页数学学报(英文版)

基  金:Institute for Studies in Theoretical Physics and Mathematics(IPM),Tehran

摘  要:It is well known that every prime ideal minimal over a z-ideal is also a z-ideal. The converse is also well known in C(X). Thus whenever I is an ideal in C(X), then √I is a z-ideal if and only if I is, in which case √I = I. We show the same fact for z^-ideals and then it turns out that the sum of a primary ideal and a z-ideal (z^o-ideal) in C(X) which are not in a chain is a prime z-ideal (z^o-ideal). We also show that every decomposable z-ideal (z^o-ideal) in C(X) is the intersection of a finite number of prime z-ideals (z^o-ideal). Some counter-examples in general rings and some characterizations for the largest (smallest) z-ideal and z^o-ideal contained in (containing) an ideal are given.It is well known that every prime ideal minimal over a z-ideal is also a z-ideal. The converse is also well known in C(X). Thus whenever I is an ideal in C(X), then √I is a z-ideal if and only if I is, in which case √I = I. We show the same fact for z^-ideals and then it turns out that the sum of a primary ideal and a z-ideal (z^o-ideal) in C(X) which are not in a chain is a prime z-ideal (z^o-ideal). We also show that every decomposable z-ideal (z^o-ideal) in C(X) is the intersection of a finite number of prime z-ideals (z^o-ideal). Some counter-examples in general rings and some characterizations for the largest (smallest) z-ideal and z^o-ideal contained in (containing) an ideal are given.

关 键 词:√z-Ideals √z^o-Ideals quasi F-space almost P-space 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象