检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHOU Feng GUO Huai-cheng LIU Yong HAO Ze-jia
机构地区:[1]College of Environmental Sciences, Peking University, Beijing 100871, China.
出 处:《Journal of Environmental Sciences》2007年第7期805-810,共6页环境科学学报(英文版)
基 金:Project supported by the National Basic Research Program (973) of China(No. 2005CB724205);China Scholarship Programs of the Ministry ofEducation of China (No. 2006100766).
摘 要:Comprehensive and joint applications of GIS and chemometric approach were applied in identification and spatial patterns of coastal water pollution sources with a large data set (5 years (2000-2004), 17 parameters) obtained through coastal water monitoring of Southern Water Control Zone in Hong Kong. According to cluster analysis the pollution degree was significantly different between September-next May (the 1st period) and June-August (the 2nd period). Based on these results, four potential pollution sources, such as organic/eutrophication pollution, natural pollution, mineral/anthropic pollution and fecal pollution were identified by factor analysis/principal component analysis. Then the factor scores of each monitoring site were analyzed using inverse distance weighting method, and the results indicated degree of the influence by various potential pollution sources differed among the monitoring sites. This study indicated that hybrid approach was useful and effective for identification of coastal water pollution source and spatial patterns.Comprehensive and joint applications of GIS and chemometric approach were applied in identification and spatial patterns of coastal water pollution sources with a large data set (5 years (2000-2004), 17 parameters) obtained through coastal water monitoring of Southern Water Control Zone in Hong Kong. According to cluster analysis the pollution degree was significantly different between September-next May (the 1st period) and June-August (the 2nd period). Based on these results, four potential pollution sources, such as organic/eutrophication pollution, natural pollution, mineral/anthropic pollution and fecal pollution were identified by factor analysis/principal component analysis. Then the factor scores of each monitoring site were analyzed using inverse distance weighting method, and the results indicated degree of the influence by various potential pollution sources differed among the monitoring sites. This study indicated that hybrid approach was useful and effective for identification of coastal water pollution source and spatial patterns.
关 键 词:source identification spatial pattern cluster analysis (CA) principal component analysis (PCA) inverse distance weighting (IDW) Hong Kong
分 类 号:X52[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229