SOME n-RECTANGLE NONCONFORMING ELEMENTS FOR FOURTH ORDER ELLIPTIC EQUATIONS  被引量:15

SOME n-RECTANGLE NONCONFORMING ELEMENTS FOR FOURTH ORDER ELLIPTIC EQUATIONS

在线阅读下载全文

作  者:Ming Wang Zhong-Ci Shi Jinchao Xu 

机构地区:[1]LMAM, School of Mathematical Sciences, Peking University, Beijing 100080, China [2]LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China [3]School of Mathematical Sciences, Peking University, Beijing 100080, China and Department of Mathematics, Pennsylvania State University, USA

出  处:《Journal of Computational Mathematics》2007年第4期408-420,共13页计算数学(英文)

基  金:The work of the first author was supported by the National Natural Science Fbundation of china(10571006);The work of the shird author was supperted by the Changjiang Professorship of the Ministry of Education of China through Peking University

摘  要:In this paper, three n-rectangle nonconforming elements are proposed with n ≥ 3. They are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit element in two spatial dimensions to any higher dimensions respectively. These elements are all proved to be convergent for a model biharmonic equation in n dimensions.In this paper, three n-rectangle nonconforming elements are proposed with n ≥ 3. They are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit element in two spatial dimensions to any higher dimensions respectively. These elements are all proved to be convergent for a model biharmonic equation in n dimensions.

关 键 词:Nonconforming finite element Forth order elliptic equation Biharmonic. 

分 类 号:O175.25[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象