检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翟绍辉[1]
出 处:《厦门大学学报(自然科学版)》2007年第4期457-460,共4页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金(10331020)资助
摘 要:如果图G中有n-匹配并且对任意一个n-匹配M,G中都有一个分数完美匹配f使得对于任意e∈M,f(e)=1成立,那么G被称为是分数n-可扩图.马英红等首先引出此概念,并给出分数n-可扩图和极大分数n-可扩图的刻画.本文分别刻画了分数n-可扩二部图和极小分数n-可扩图,研究了k-因子临界图和分数n-可扩图之间的关系并利用图的bind-ing数和最小度给出了分数n-可扩图的两个充分条件.A graph G is called fractional n-extendable if G has a n-matching and each n-matching M of G can be extended to a frac- tional perfect matching M of G such that f(e) = 1 for all e∈M. Ma and Liu firstly introduced the concept and characterized fractional n-extendable graphs and maximally fractional n-extendable graphs. In this paper, the author characterizes fractional n-extendable bi- partite graphs and minimally fractional n-extendable graphs, and studies the relation between fractional n-extendablegraphs and k-factor-critical graphs. In addition, the author gives two sufficient conditions of fractional n-extendable graphs in term of binding number and minimum degree respectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15