Kinetic Monte Carlo simulation of microalloying effect in Al-Ag alloys  被引量:1

Kinetic Monte Carlo simulation of microalloying effect in Al-Ag alloys

在线阅读下载全文

作  者:周明 李世晨 郑子樵 杨培勇 

机构地区:[1]School of Materials Science and Engineering, Central South University

出  处:《中国有色金属学会会刊:英文版》2007年第3期461-467,共7页Transactions of Nonferrous Metals Society of China

基  金:Project(50271084) supported by the National Natural Science Foundation of China

摘  要:The kinetic Monte Carlo method, which based on the Multi-States Ising Model, was applied to simulate the effect of microelements on the microstructural evolution of Al-Ag alloys during initial aging stage. The simulation results suggest that the microelements In, Sn and Be have a dramatic depression effect on the Ag clustering because of their strong tendency to co-existed with vacancies. There are no significant effects on the process of Ag clustering in Al-Ag alloys containing Li or Cd, because of little interaction between Li/Cd and Ag/vacancies. Microelements can influence the aging by interacting with vacancies and the atoms of precipitated composition, in which the former seems more important. In this model, “vacancy-locking” and “vacancy clusters” are two important mechanisms in the aging process.The kinetic Monte Carlo method, which based on the Multi-States Ising Model, was applied to simulate the effect of microelements on the microstructural evolution of Al-Ag alloys during initial aging stage. The simulation results suggest that the microelements In, Sn and Be have a dramatic depression effect on the Ag clustering because of their strong tendency to co-existed with vacancies. There are no significant effects on the process of Ag clustering in Al-Ag alloys containing Li or Cd, because of little interaction between Li/Cd and Ag/vacancies. Microelements can influence the aging by interacting with vacancies and the atoms of precipitated composition, in which the former seems more important. In this model, "vacancy-locking" and "vacancy clusters" are two important mechanisms in the aging process.

关 键 词:银铝合金 微合金化 老化现象 模拟技术 

分 类 号:TG146.21[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象