一种数据流上基于截止期的多查询过载预测模型  

A Multi-query Overload Prediction Model for Deadline-Aware Data Stream Processing

在线阅读下载全文

作  者:武珊珊[1] 谷峪[1] 岳德君[1] 于戈[1] 

机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110004

出  处:《东北大学学报(自然科学版)》2007年第7期961-964,977,共5页Journal of Northeastern University(Natural Science)

基  金:国家自然科学基金资助项目(6047303760503036);霍英东青年基金优选课题资助项目(104027)

摘  要:为保证数据流上查询处理的实时性要求,定义了截止期作为连续查询的实时性约束,提出了一种数据流上基于截止期的多查询过载预测模型.模型预测的过载点给出了能够保证数据流系统内所有查询满足各自截止期的临界情况.在多查询环境下,通过找到某一查询作为截止期瓶颈,使得该查询处理结束后剩余查询的处理能力正好大于系统的输入流速,从而计算出过载点.仿真实验结果证明,该模型预测出的过载点能够保证所有查询满足各自的截止期,并且预测算法具有良好的准确性和计算复杂性.To meet the real-time requirements for query processing over data streams, the deadline is defined as the real-time constraint of continuous queries. A multi-query overload prediction model is thus developed for deadline-aware data stream processing. The overload point predicted by the model indicates the critical conditions under which each and all of the queries can meet the requirements of deadline individually. In the circumstance of multiple queries, the overload point is estimated by finding a query as deadline bottleneck. After processing the deadline bottleneck, the processing capability of the residual queries is just higher than the input stream rate, thus working out the overload point. The simulation results showed that the overload point predicted by the model enables each and all of the queries to meet individually the deadline they required, and that the prediction algorithm is accurate and efficient.

关 键 词:数据流 实时 截止期 过载预测 多查询 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象