检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学土木建筑工程学院,安徽合肥230009 [2]东南大学土木工程学院,江苏南京210096
出 处:《合肥工业大学学报(自然科学版)》2007年第3期290-293,共4页Journal of Hefei University of Technology:Natural Science
基 金:江苏省交通厅资助项目(03y031)
摘 要:将连续梁分解成有端弯矩作用的简支梁,根据分离体挠曲变形协调,建立界面切向力与法向力的关系方程;与界面连接件的剪力滑移物理方程联立,可解得界面切向剪力及滑移的分布函数,以分解简支梁在内支座处的滑移应变及挠曲线的二阶导数相同等作为连续梁的边界条件,求解积分常数,从而导出考虑界面滑移的连续组合梁挠曲线方程。结果表明:连续梁在中支座处虽然滑移为零,但滑移应变不为零;跨中最大弯矩截面的滑移计算结果为零,与实际吻合,因此可作为一个边界条件,独立求解跨中有弯矩极值点的边跨滑移挠曲线方程,进而逐跨求解挠度增量。The continuous beam is decomposed into simply supported beams with the end moment. According to the uniform deforming curve of isolated units, the equation of tangent and normal force is established. The distributing functions of interface force and slip are defined by combing the constitutive relation of shearing and slip and the above equation. Based on the boundary equations of slip strain on the middle support equal to the second order of the deflection curve of the simply supported beam, the integral constant can be solved, then the equation of the deflection curve of the continuous composite beam considering interface slip can be derived. Results show that the slip displacement of the continuous beam on the middle support is equal to zero, but the slip strain is not. The maximum calculating slip in the mid-span with the maximum moment is equal to zero, which agrees well with the actual experimental data. And this equality can be a boundary equation for solving the deflection curve equation of the side span with the extreme moment, and then the deflection increment can be solved span by span.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40