硬岩抗剪强度参数的最优化确定法  被引量:3

An Optimized Method for Determining Shear Strength Parameters of Hard Rock

在线阅读下载全文

作  者:唐杰军[1] 汪亦显[2] 

机构地区:[1]湖南交通职业技术学院路桥工程系,湖南长沙410004 [2]中南大学,湖南长沙410083

出  处:《中南林业科技大学学报》2007年第3期95-100,共6页Journal of Central South University of Forestry & Technology

摘  要:为了减小岩工程分析计算的工作量和节约研究经费,须利用有限的室内实验样本的测定值,通过对有限实验样本数据的回归分析整理,确定岩石抗剪强度参数c、φ,进而估计岩体的抗剪强度c、φ.由于试验方法、试验条件等有一定局限性,因而,岩石力学参数的试验结果具有一定的不确定性.其不确定性包含随机性和模糊性.而用传统的数理统计方法处理岩石样本值,显然是不合适的,只有通过寻求最优的数学回归分析方法,来处理相关试验结果.笔者通过对硬岩变角度剪切实验和常规三轴压缩实验的数据回归分析,得到利用最小二乘法的抛物线回归分析结果和随机-模糊回归分析结果比较符合.因而,为了优化计算结果而又避免繁琐的计算,通常可以采用最小二乘法的抛物线回归分析计算代替随机-模糊回归分析相关结果.In order to reduce workload and save research funds, a regression analysis was conducted of the limited measured values of the indoor-experiment samples and of the collected data, to determine the shear strength parameters c & φ of hard rock. The test result of rock mechanic parameters has certain uncertainty because of the certain limitation of testing method and condition. Uncertainties include randomness and fuzziness. It is inappropriate to process the value of the indoor-experiment samples with the traditional mathematical statistic method. Best methods for mathematical regression analysis ought to be chosen to deal with relevant test results. By a regression analysis of the result from changing the angle to cut test and tri-axial compression test, we obtained the result from a parabola regression analysis, using least squares method. When it is compared with the result from a random-fuzzy regression analysis, the two results are similar. Therefore, the parabola regression analysis computation from the least squares method can be used to replace the related result from the stochastic random-fuzzy regression analysis in order to optimize the computed result and avoid the tedious computation.

关 键 词:硬岩 抗剪强度 回归分析 最小二乘法 随机-模糊法 

分 类 号:TU458[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象