检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:申瑞玲[1] 关保华[1] 蔡颖[1] 安树青[1] 蒋金辉[1] 董蕾[2]
机构地区:[1]南京大学生命科学学院 [2]中国科学院华南植物园,广州510650
出 处:《植物生态学报》2007年第4期665-672,共8页Chinese Journal of Plant Ecology
基 金:科技部镇江863专项(2003AA06011000-04);科技部太湖863专项(2002AA601012-06)
摘 要:植物通过改变自身的形态和生态生理特征对多变的环境因素做出响应,这种表型可塑性能增强外来物种的入侵能力。该文研究了入侵植物喜旱莲子草(Alternanthera philoxeroides)对底泥磷浓度、植株密度以及二者间交互作用的可塑性响应,探讨可塑性是否能使其获得更高的入侵能力。结果表明:低密度×底泥高磷浓度处理条件下的叶重、茎重、总重、叶数、分枝数和茎长等明显高于低、中磷浓度处理;高密度×底泥高磷浓度条件下的叶数、茎长和比茎长的值最大;植株的含磷量随底泥磷浓度的升高显著增加,说明喜旱莲子草响应底泥磷浓度变化时改变了自身的形态与生态生理性状。泥底含磷量对叶重比、叶数、茎长、茎磷含量、叶磷含量和植株总含磷量的影响都达到显著水平(p<0.05);植株密度对茎重、比茎长、叶磷含量和植株总磷含量的影响达到显著水平(p<0.05)。与入侵能力相关的叶重比、叶数、茎长在底泥高磷浓度处理中显著增加,说明底泥的高磷浓度增强了喜旱莲子草的入侵能力。Aims Plants show phenotypic plasticity in response to changing environments via variations of morphological and ecophysiological traits, and this plasticity can increase invasiveness. Plasticity, rather than genetic diversity, made Ahernanthera philoxeroides more invasive, but its plasticity to sediment phosphorus concentration of invaded habitats was undocumented. This study addresses plasticity of A. philoxeroides to sediment phosphorus concentration and planting density and whether plasticity increases invasiveness. Methods In a controlled factorial experiment, we grew artificial populations of A. philoxeroides at low and high densities (four and eight individuals per container, respectively) under three levels (low, median, high) of sediment phosphorus concentrations. All plants were harvested after six weeks, and dry mass of leaves, stems and roots were measured. Important findings Under low planting density, leaf mass and number, stem mass and length, branch number, and total biomass of A. philoxeroides were larger at high than low or median sediment phosphorus concentration. Under high planting density, leaf number, stem length and special stem length were greater at high than at low or median sediment phosphorus concentration. Leaf, stem, root and total phosphorus concentrations in A. philoxeroicles increased significantly with increasing the sediment phosphorus concentration. Leaf mass ratio was also affected by sediment phosphorus concentration, and stem mass, special stem length, leaf and total phosphorus concentration were significantly affected by planting density. Results imply that morphological and ecophysiological traits of A. philoxeroicles were altered by sediment phosphorus concentration and that high sediment phosphorus may strengthen the invasiveness of A. philoxeroicles.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222