一种改进遗传算法及在多目标优化中的应用  被引量:7

An Improved Genetic Algorithm and Its Application to Multi-Object Optimization

在线阅读下载全文

作  者:张雄飞[1] 柳少军[1] 

机构地区:[1]国防大学信息作战与指挥训练教研部,北京100091

出  处:《系统管理学报》2007年第3期315-319,共5页Journal of Systems & Management

基  金:国家863计划资助项目(2004AA115120)

摘  要:基本遗传算法在求解大规模多目标优化问题时会出现早熟和搜索效率低等问题。针对这些问题,对基本遗传算法引入了邻域操作、自适应策略和混沌优化等多种改进策略,研究设计了一种有机结合各种改进策略的改进遗传算法流程。应用实例的仿真试验表明改进算法可行,且在求解大规模多目标优化问题时较基本遗传算法具有精度和速度优势。Basic genetic algorithm has been confronted with several problems such as premature and low- search-speed when it is applied to solve military multi-object optimizing problems. To avoid these problems, some methods including adjacent-domain operations, adaptability and chaos have been taken into consideration in this paper to improve the capability of the algorithm. Furthermore, the paper designs an improved algorithmic flow structure which organically combined all the above methods. The simulation results show that the improved algorithm is more reliable and more accurate than the basic algorithm in solving multi-object optimizing problems.

关 键 词:多目标优化 遗传算法 邻域操作 自适应策略 混沌 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象