检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110004
出 处:《东北大学学报(自然科学版)》2007年第8期1105-1108,共4页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金资助项目(60573089)
摘 要:为了有效地预测聚集查询的未来聚集值,提出了一种基于混沌理论的数据流连续聚集查询预测未来聚集值算法——CSPA算法.数据流看作是以数据到达时间为序的一个时间序列,借鉴传统时间序列分析技术探讨了连续聚集查询的未来聚集值预测问题,但由于数据流序列与传统时间序列在时间间隔和数据集的处理上存在很大差别,于是采用流滑动窗口技术加以处理.其次,针对目前数据流聚集查询预测领域已有的一些研究结果都未考虑流数据内在的复杂非线性动力学特征对预测的影响问题,该算法又利用了混沌理论中的局域预测思想解决了这一不足.实验结果表明,利用该算法进行预测具有很好的准确性.CSPA (chaotic stream predictive algorithm) is proposed to predict efficiently the prospective aggregate values of the aggregate queries which are continuous and over data streams, based on the theory of chaos. Regarding the data stream as a time series where all the arrival times of data are arranged in order, the prediction of the prospective aggregate values of continuous aggregate queries is discussed in view of the conventional analysis of time series. However, a data stream series differs greatly from conventional time series in both time interval and data set processing, the moving window technique is therefore used for stream processing. In addition, the influence of the complex inherent nonlinear dynamic characteristics in streaming data on the prediction had not been considered in relevant earlier works. So, CSPA makes use of the idea about local prediction included in the theory of chaos to make up for the deficiency. Experimental results showed the high exactness of using the CSPA algorithm.
分 类 号:TP311.3[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145