检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学力学系,天津300072
出 处:《应用数学和力学》2007年第8期883-893,共11页Applied Mathematics and Mechanics
基 金:国家自然科学基金(重点)资助项目(10632050);南开大学天津大学刘徽应用数学中心资助项目
摘 要:用抛物化稳定性方程(PSE),研究了可压缩边界层中扰动的演化,并与由直接数值模拟(DNS)所得进行比较.目的在检验PSE方法用于研究可压缩边界层中扰动演化的可靠性.结果显示,无论是亚音速还是超音速边界层,由PSE方法和由DNS方法所得结果都基本一致,而温度比速度吻合得更好.对超音速边界层,还计算了小扰动的中性曲线.与线性稳定性理论(LST)的结果相比,二者的关系和不可压边界层的情况相似.Parabolized stability equations (PSE) were used to study the evolution of disturbances in compressible boundary layers. The results were comparred with those obtained by direct numerical simulations(DNs) ,to check if the results from PSE method were reliable or not. The results of comparison showed that no matter for subsonic or supersonic boundary layers, results from both the PSE method and DNS method agreed with each other reasonably well. And the agreement between teamperatures is better than those between velocities. In addition, linear PSE was used to calculate the neutral curve for small amplitude disturbances in a supersonic boundary layer. Compared with those obtained by linear stability theory (LST), the situation is similar to those for incompressible boundary layer.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222