Jackson's Theorem on Bounded Symmetric Domains  被引量:3

Jackson's Theorem on Bounded Symmetric Domains

在线阅读下载全文

作  者:Ming Zhi WANG Guang Bin REN 

机构地区:[1]School of Science, Huzhou Teachers College, Huzhou 313000, P. R. China [2]Department of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2007年第8期1391-1404,共14页数学学报(英文版)

基  金:Partially supported by the NNSF of China(No.10471134);SRFDP;NCET

摘  要:Polynomial approximation is studied on bounded symmetric domain Ω in C^n for holomorphic function spaces X such as Bloch-type spaces, Bergman-type spaces, Hardy spaces, Ω algebra and Lipschitz space. We extend the classical Jackson's theorem to several complex variables:Eκ(f,X)≤ω(1/k,f,X), where Eκ(f,X) is the deviation of the best approximation of f ∈X by polynomials of degree at most k with respect to the X-metric and ω(1/k,f,X) is the corresponding modulus of continuity.Polynomial approximation is studied on bounded symmetric domain Ω in C^n for holomorphic function spaces X such as Bloch-type spaces, Bergman-type spaces, Hardy spaces, Ω algebra and Lipschitz space. We extend the classical Jackson's theorem to several complex variables:Eκ(f,X)≤ω(1/k,f,X), where Eκ(f,X) is the deviation of the best approximation of f ∈X by polynomials of degree at most k with respect to the X-metric and ω(1/k,f,X) is the corresponding modulus of continuity.

关 键 词:bounded symmetric domains Bergman spaces polynomial approximation 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象