The Factor Decomposition Theorem of Bounded Generalized Inverse Modules and Their Topological Continuity  被引量:2

The Factor Decomposition Theorem of Bounded Generalized Inverse Modules and Their Topological Continuity

在线阅读下载全文

作  者:Lun Chuan ZHANG 

机构地区:[1]School of Information Science, Renmin University of China, Beijing 100090, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2007年第8期1413-1418,共6页数学学报(英文版)

基  金:Project supported by NSF of China"Maximal regularity for vector-valued boundary problems"(10571099);NSF of China(10571003)

摘  要:In this paper we obtain a Douglas type factor decomposition theorem about certain important bounded module maps. Thus, we come to the discussion of the topological continuity of bounded generalized inverse module maps. Let X be a topological space, x →Tx : X→L(E) be a continuous map, and each R(Tx) be a closed submodule in E, for every fixed x C X. Then the map x→ Tx^+: X→L(E) is continuous if and only if ||Tx^+|| is locally bounded, where Tx^+ is the bounded generalized inverse module map of Tx. Furthermore, this is equivalent to the following statement: For each x0 in X, there exists a neighborhood ∪0 at x0 and a positive number λ such that (0, λ^2)lohtatn in ∩x∈∪0C/σ(Tx^+Tx), where a(T) denotes the spectrum of operator T.In this paper we obtain a Douglas type factor decomposition theorem about certain important bounded module maps. Thus, we come to the discussion of the topological continuity of bounded generalized inverse module maps. Let X be a topological space, x →Tx : X→L(E) be a continuous map, and each R(Tx) be a closed submodule in E, for every fixed x C X. Then the map x→ Tx^+: X→L(E) is continuous if and only if ||Tx^+|| is locally bounded, where Tx^+ is the bounded generalized inverse module map of Tx. Furthermore, this is equivalent to the following statement: For each x0 in X, there exists a neighborhood ∪0 at x0 and a positive number λ such that (0, λ^2)lohtatn in ∩x∈∪0C/σ(Tx^+Tx), where a(T) denotes the spectrum of operator T.

关 键 词:factor decomposition generalized inverse module map 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象