检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lun Chuan ZHANG
机构地区:[1]School of Information Science, Renmin University of China, Beijing 100090, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2007年第8期1413-1418,共6页数学学报(英文版)
基 金:Project supported by NSF of China"Maximal regularity for vector-valued boundary problems"(10571099);NSF of China(10571003)
摘 要:In this paper we obtain a Douglas type factor decomposition theorem about certain important bounded module maps. Thus, we come to the discussion of the topological continuity of bounded generalized inverse module maps. Let X be a topological space, x →Tx : X→L(E) be a continuous map, and each R(Tx) be a closed submodule in E, for every fixed x C X. Then the map x→ Tx^+: X→L(E) is continuous if and only if ||Tx^+|| is locally bounded, where Tx^+ is the bounded generalized inverse module map of Tx. Furthermore, this is equivalent to the following statement: For each x0 in X, there exists a neighborhood ∪0 at x0 and a positive number λ such that (0, λ^2)lohtatn in ∩x∈∪0C/σ(Tx^+Tx), where a(T) denotes the spectrum of operator T.In this paper we obtain a Douglas type factor decomposition theorem about certain important bounded module maps. Thus, we come to the discussion of the topological continuity of bounded generalized inverse module maps. Let X be a topological space, x →Tx : X→L(E) be a continuous map, and each R(Tx) be a closed submodule in E, for every fixed x C X. Then the map x→ Tx^+: X→L(E) is continuous if and only if ||Tx^+|| is locally bounded, where Tx^+ is the bounded generalized inverse module map of Tx. Furthermore, this is equivalent to the following statement: For each x0 in X, there exists a neighborhood ∪0 at x0 and a positive number λ such that (0, λ^2)lohtatn in ∩x∈∪0C/σ(Tx^+Tx), where a(T) denotes the spectrum of operator T.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186