检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡志强[1] 谷雨[1] 胡燏翀[1] 许胤龙[1]
机构地区:[1]中国科学技术大学计算机科学与技术系
出 处:《计算机应用》2007年第8期1835-1838,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(60241004);国家973计划资助项目(2003CB314801)
摘 要:无信标无线传感器网络的传感器节点通常是按照一定的概率,以分组形式部署,为实现其定位和动态节点跟踪,提出了的无信标定位发现策略,在已有的部署之上,建立模型去反映目标位置和监测传感器探测信息之间的内在关系,同时还建立了预测模型来对目标移动方式进行推断。利用贝叶斯理论构造了一个条件概率分布,将以上两种模型相关参数归并起来,并在这个分布上应用最大似然估计(MLE)方法来估测目标的位置。实验结果表明此目标定位策略取得了较好的效果。A beacon-less location discovery scheme was proposed due to the toUowing observations: sensors are usually deployed in groups and sensors from the same group may land in different locations that follow a probability distribution. With this prior deployment knowledge, a model was built to reflect inherence information between positions of the object and observations provided by alert sensors. Also a prediction modal was set up to offer prior knowledge about moving patterns of the object. Generally speaking, the Bayes rule provides us a suitable way to combine those two kinds of knowledge so as to generate a conditional distribution. By applying the Maximum Likelihood Estimation (MLE) method to this distribution, the object's accurate positions could be estimated. Experimental results prove that the scheme can get better effect.
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249