A unique solution to a semilinear Black-Scholes partial differential equation for valuing multi-assets of American options  

A unique solution to a semilinear Black-Scholes partial differential equation for valuing multi-assets of American options

在线阅读下载全文

作  者:罗庆丽 盛万成 

机构地区:[1]Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, P. R. China

出  处:《Journal of Shanghai University(English Edition)》2007年第4期344-350,共7页上海大学学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No.10271072)

摘  要:In this paper, by using the optimal stopping theory, the semilinear Black-Scholes partial differential equation (PDE) was invesigated in a fixed domain for valuing two assets of American (call-max/put-min) options. From the viscosity solution of a PDE, a unique viscosity solution was obtained for the semilinear Black-Scholes PDE.In this paper, by using the optimal stopping theory, the semilinear Black-Scholes partial differential equation (PDE) was invesigated in a fixed domain for valuing two assets of American (call-max/put-min) options. From the viscosity solution of a PDE, a unique viscosity solution was obtained for the semilinear Black-Scholes PDE.

关 键 词:optimal stopping  American (call-max/put-min) options  semilinear Black-Scholes partial differential equation(PDE)  viscosity solution  existence niqueness 

分 类 号:O1-0[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象