基于分子参数的药物小肠吸收预测模型  被引量:6

Prediction of human intestinal absorption based on molecular indices

在线阅读下载全文

作  者:李兰婷[1] 李燕[1] 王永华[2] 张述伟[1] 杨凌[2] 

机构地区:[1]大连理工大学化工学院化学工艺教研室,辽宁大连116012 [2]中国科学院大连化学物理研究所药用资源开发研究组,辽宁大连116023

出  处:《分子科学学报》2007年第4期286-291,共6页Journal of Molecular Science

基  金:大连理工大学-中科院大连化学物理研究所合作科研探索基金资助项目

摘  要:选择100个化合物作为数据集,随机选取其中80个为训练集,其他分子为验证集,并为每个化合物分子计算了30个参数.通过采用五种不同多元线性回归分析方法对其训练模拟,建立了数学模型,并用验证集检验了所建模型的预测能力.结果发现向后筛选法为最优小肠吸收建模方法.由该法所建模型的统计结果良好(R2>0.80),应用于验证集时也表现出较强预测能力.该模型确定了对小肠吸收影响较大的分子参数,有助于指导进一步的新药筛选和开发.To quantitatively predict the fraction absorption of drugs of human intestine and determine the optimal regression method, a dataset composed of 100 diversified compounds,where 80 compounds served as training set and the rest ones as test set, was studied by several multivariate linear regression analysis methods. For each molecule, 30 molecular indices were calculated, resulting in a model with satisfactory statistical results (R^2〈0. 80) and proper predictability validated by the test set. From the analysis of the model, those key descriptors largely influencing the intestinal absorption of the molecules were identified,and Backword regression analysis was found to be the optimal regression method compared with the others. All these are valuable and helpful for aiding further screening and development of orally administered drugs.

关 键 词:小肠吸收 分子参数 多元线性回归 

分 类 号:R913[医药卫生—药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象