cDNA-AFLP profiling for the fiber development stage of secondary cell wall synthesis and transcriptome mapping in cotton  被引量:5

cDNA-AFLP profiling for the fiber development stage of secondary cell wall synthesis and transcriptome mapping in cotton

在线阅读下载全文

作  者:PAN YuXin MA Jun ZHANG GuiYin HAN GaiYing WANG XingFent MA ZhiYingt 

机构地区:[1]Key Laboratory of Crop Germplasm Resources of Hebei Province, Agricultural University of Hebei, Baoding 071001, China

出  处:《Chinese Science Bulletin》2007年第17期2358-2364,共7页

基  金:Supported by the National 973 Project (Grant No. 2004CB117302);the National Natural Science Foundation of China (Grant No. 30671322);the Key Project of Natural Science Foundation of Hebei Province (Grant No. C2006001034)

摘  要:Cotton fiber strength is mainly determined during the secondary cell wall deposition stage when cel- lulose is synthesized. We obtained cDNA of 20―25 d post anthesis (DPA) fiber from 109 F2 progeny and developed a cotton fiber transcriptome profiling via cDNA-AFLP technology using 37 different primer combinations. The F2 population originated from an interspecific cross between Gossypium hirsutum and Gossypium barbadense. One hundred and thirty-eight absence/presence polymorphic transcript- derived fragments (TDFs), with sizes ranging from 100 bp to 722 bp, were screened. Of these, 75 (53.62%) were polymorphic between the parents of the F2 population. Sequencing the 75 transcripts revealed that 37 of them had been reported to be cotton fiber ESTs. Nine of 75 transcript sequences were homologous to 7 cloned cotton fiber genes, encoding cysteine proteinase, vacuolar H+-pyro- phosphatase, vacuolar H+-ATPase, catalytic subunit, arabinogalactan protein, putative receptor protein kinase PERK1, GIA/RGA-like gibberellin response modulator and cellulose synthase. Some other transcripts may represent new gene fragments in cotton fiber development. Surprisingly, 46 of the 75 transcripts were mapped to a single linkage group. The transcriptome groups and the sequenced TDFs could serve as important resources in the functional genomic research of cotton fiber development.Cotton fiber strength is mainly determined during the secondary cell wall deposition stage when cellulose is synthesized. We obtained cDNA of 20—25 d post anthesis (DPA) fiber from 109 F2 progeny and developed a cotton fiber transcriptome profiling via cDNA-AFLP technology using 37 different primer combinations. The F2 population originated from an interspecific cross between Gossypium hirsutum and Gossypium barbadense. One hundred and thirty-eight absence/presence polymorphic transcriptderived fragments (TDFs), with sizes ranging from 100 bp to 722 bp, were screened. Of these, 75 (53.62%) were polymorphic between the parents of the F2 population. Sequencing the 75 transcripts revealed that 37 of them had been reported to be cotton fiber ESTs. Nine of 75 transcript sequences were homologous to 7 cloned cotton fiber genes, encoding cysteine proteinase, vacuolar H^+-pyrophosphatase, vacuolar H^+ -ATPase, catalytic subunit, arabinogalactan protein, putative receptor protein kinase PERK1, GIA/RGA-like gibberellin response modulator and cellulose synthase. Some other transcripts may represent new gene fragments in cotton fiber development. Surprisingly, 46 of the 75 transcripts were mapped to a single linkage group. The transcriptome groups and the sequenced TDFs could serve as important resources in the functional genomic research of cotton fiber development.

关 键 词:棉花 CDNA-AFLP 基因转录 纤维生长 细胞壁 

分 类 号:S562[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象