检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李明[1] 李会莹[1] 杨汉生[1] 杨成梧[1]
出 处:《系统仿真学报》2007年第17期4021-4024,共4页Journal of System Simulation
摘 要:根据生物神经元的机能,提出了一种具有动态激励函数的新型神经元模型,由此构成的神经网络(DAFNN)应用在非线性自适应逆控制中时只需要确定隐层神经元个数,从而克服了用NARX回归神经网络时需确定输入和输出延时阶数及隐层神经元个数等多个参数的不足。通过对单输入单输出(SISO)及多输入多输出(MIMO)非线性系统的自适应逆控制仿真研究,证实了DAFNN是一种很好的非线性系统建模和控制工具。When NARX neural networks are used in nonlinear adaptive inverse control, three parameters for archetecture of each network are chosen: the order of input and output delay, the number of hidden nodes. In fact, it is very difficult to choose a set of suitable parameters to guarantee the system stability. A new type artificial neuron, worked as a dynamic mapping, was proposed based on real ones. A new neural network, called DAFNN for its dynamic activation functions in neurons, was built subsequently. There only hidden nodes need to be detemined in DAFNNs. So when DAFNNs are used in nonlinear adaptive inverse control, the stucture of the system become simpler. Then it has a simpler on-line learning algorithm, which improves the convergence of neural networks and stability of the system significantly. Simulation results show DAFNNs are good tools for nonlinear identification and control.
关 键 词:动态神经网络 自适应逆控制 非线性系统 NARX回归神经网络
分 类 号:TP273.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15