基于Gabor小波变换册的齿轮故障诊断方法  被引量:1

A Gear Fault Diagnosis Method Based on Gaborlet Transform Atlas

在线阅读下载全文

作  者:谭伟[1] 王春[2] 王东[1] 曹长修[1] 

机构地区:[1]重庆大学自动化学院,重庆400044 [2]重庆大学机械传动国家重点实验室,重庆400044

出  处:《计算机仿真》2007年第8期254-258,共5页Computer Simulation

摘  要:齿轮产生局部故障时,失效的轮齿间断地进入啮合,产生冲击振动,使得齿轮振动信号包含了非平稳或时变成分。基于平稳信号处理的传统方法无法全面反映信号的时变特性。作者研究了Gabor小波变换册方法,Gabor小波变换册是小波变换的推广,它是时间—频率—尺度三维空间上的线性变换,它有机结合了小波变换与Gabor变换,具有对非平稳信号的强大分析功能,利用其作信号的谱估计,不仅具有小波变换谱估计方法高频率分辨率的优点,而且不受信号频率范围宽窄的限制,可以根据需要自由地选择尺度参数,谱估计值准确有效。利用Gabor小波变换册作齿轮故障信号的谱估计,比经典的自功率谱估计在齿轮局部故障诊断中能取得更好的效果。文中并对该方法进行了仿真和实验验证,仿真和实验数据的分析结果表明这些方法可突出齿轮的边频带结构,适用于齿轮的局部故障诊断,具有一定的应用价值和更深入的研究价值。when gear's local fault occurs, the dead gear teeth mesheogether discontinuously, thus causing attack shake signal including unstable and time change content. The traditional method based on stable signal processing can not reflect the time change characteristic, thereby the application effect is not ideal. The author has studied the method of Gaborlet transform atlas. As generalization of wavelet transform, Gaborlet transform atlas is a linear transform in 3 dimensional time - frequency - scale space. Combining wavelet transform with Gabor transform, it has more powerful function on analyzing unstable signal. Signal spectral estimate by Gabodet transform atlas not only has better frequency resolution, but also is free from signal frequency range and can select scale parameter according to demands. So, the spectral estimate is accurate and effective. Spectra estimation based on Gaborlet transform can acquire better result than classical power spectra estimation in local fault diagnosis of gear. The paper has researched and verified this method by test. The simulation and test result indicates that the method can highlight sidebang configuration of gear and it is applicable for local fault diagnosis of gear and is quite of application value, and deserves further study.

关 键 词:小波变换 能量谱 故障诊断 仿真 

分 类 号:TP319[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象