检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙国忠[1] 袁清波[1] 陈明宇[1] 樊建平[2]
机构地区:[1]中国科学院计算技术研究所国家智能计算机研究开发中心 [2]中国科学院计算技术研究所,北京100080
出 处:《计算机研究与发展》2007年第8期1331-1338,共8页Journal of Computer Research and Development
基 金:国家自然科学基金项目(60633040)
摘 要:在机群系统或数据库服务器等应用环境下,由于本地内存资源限制,某些大内存应用与磁盘交互过多,会严重损害其性能.在高速网络支持下,把其他节点内存或采用专门的内存服务器作为系统的二级缓存,可减少对磁盘访问并提高应用性能.在二级缓存应用模式下,基于LIRS算法并对其存在的缺点进行改进,提出了一种自适应缓存管理算法LIRS-A.LIRS-A可根据应用访问特征自适应调整,避免了LIRS不适应某些具有时间局部性模式的情况.在TPC-H应用中,LIRS-A比LIRS最多有7.2%的性能提升;在网络流分析数据库的典型Groupby查询中,LIRS-A比LIRS的命中率最多可提高31.2%.In a cluster or a database server system, the performance of some data intensive applications will be degraded much because of the limited local memory and large amount of interactions with slow disk. In high speed network, utilizing remote memory of other nodes or customized memory server to be as second level buffer can decrease access numbers to disks and benefit application performance. With second level buffer mode, this paper made some improvements for a recently proposed buffer cache replacement algorithm-LIRS, and brings forward an adaptive algorithm-LIRS-A. LIRS-A can adaptively adjust itself according to application characteristic, thus the problem of not suiting for time locality of LIRS is avoided. In TPC-H benchmarks, LIRS-A could improve hit rate over LIRS by 7.2 % at most. In a Groupby query with network stream analyzing database, LIRS-A could improve hit rate over LIRS by 31.2% at most. When compared with other algorithms, LIRS-A also show similar or better performance.
关 键 词:缓存替换 LIRS LIRS-A PPM 二级缓存 TPC-H
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42