一种基于克隆选择的动态聚类算法  被引量:2

A Dynamic Clustering Algorithm Based on Clonal Selection

在线阅读下载全文

作  者:黄琳[1] 陈耀文[1] 

机构地区:[1]汕头大学工学院电子系,广东汕头515063

出  处:《微计算机信息》2007年第27期255-257,共3页Control & Automation

摘  要:本文在克隆选择免疫算法和层次聚类的基础上,提出一种动态聚类算法。该算法无需先验知识,首先初始化与抗原相同规模的抗体,然后根据亲和力进行抗原识别、抗体抑制和合并,完成一轮聚类;再利用aiNET免疫网络模型动态确定聚类后的抗体的变异方向,实施强目的性变异,变异率反比例于进化代数动态调节,使变异后相似的抗体进一步合并,如此反复直到满足终止条件。仿真的实验结果表明,该算法比传统的聚类方法具有更好的聚类结果和更高的性能。According to the basis of clonal selection immune algorithm and hierarchical clustering, an improved dynamic clustering algorithm is presented, in which no pre-knowledge is needed. Firstly the same size of antibodies as the antigens is initialized; Secondly antigen recognizing, antibody restraining and merging are performed based on antibody affinity to complete a round of clustering;Thirdly, in order to do some motivated mutating, the mutating location of antibodies is determined using aiNET immune network model and the mutating rate is dynamically adjusted inversely proportional to the generation count of immune evolution. After dynamic mutating, the similar antibodies are merged again. Then it repeats the above processes until meets the ending condition. Experimental result shows that it has better clustering results and performance than traditional ones.

关 键 词:聚类 克隆选择 免疫算法 变异 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象