检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李铁军[1] 朱成实[1] 吕营[1] 王丹[1] 王学平[1]
出 处:《煤矿机械》2007年第10期187-189,共3页Coal Mine Machinery
摘 要:针对风机常见故障征兆与故障类型之间的非线性映射关系,结合专家知识建立了风机系统故障知识库,提出了基于PNN神经网络的风机故障诊断方法,结果表明该方法能克服BP算法诊断过程中容易陷入局部极小的缺点,并能满足故障诊断的快速性和准确性要求,适用于在线检测,具有实际应用价值。Based on nonlinear mapping relationship between fault symptom and fan faults, probabilistic neural network (PNN) approach was presented for fault diagnosis. Then fault features were extracted from fan failures and the extracted features were regarded as fault symptom eigenvector. Fault diagnosis model and fault diagnosis algorithm were given using probabilistic neural network. The result shows that probabilistic neural network can overcome the limitation of local imrinitesimal of BP, and can meet the requirement for fast diagnosis rate and high diagnosis precision during fault diagnosis process, so probabilistic neural network can be used in the real time diagnosis. And it shows that the fault diagnosis based on probabilistic neural network is useful.
分 类 号:TP11[自动化与计算机技术—控制理论与控制工程] TH43[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15