检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bao Zhiqiang Wu Shunjun Zhang Linrang
机构地区:[1]National Lab of Radar Signal Processing, Xidian Univ., Xi'an 710071, China
出 处:《Journal of Electronics(China)》2007年第5期655-661,共7页电子科学学刊(英文版)
基 金:Supported by the National Natural Science Foundation of China (No.60102005).
摘 要:In this paper,a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding,which does not require a priori knowledge of source number and the predetermined threshold (separates the signal and noise ei- gen-values).Firstly,according to the estimation of noise subspace obtained by the power method,a novel source number detection method without eigen-decomposition is proposed based on QR de- composition.Furthermore,the eigenvectors of signal subspace can be determined according to Q matrix and then the directions of signals could be computed by the ESPRIT algorithm.To determine the source number and subspace,the computation complexity of the proposed algorithm is approximated as (2log_2 n+2.67)M^3,where n is the power of covariance matrix and M is the number of array ele- ments.Compared with the Single Vector Decomposition (SVD) based algorithm,it has a substantial computational saving with the approximation performance.The simulation results demonstrate its effectiveness and robustness.In this paper, a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding, which does not require a priori knowledge of source number and the predetermined threshold (separates the signal and noise eigen-values). Firstly, according to the estimation of noise subspace obtained by the power method, a novel source number detection method without eigen-decomposition is proposed based on QR decomposition. Furthermore, the eigenvectors of signal subspace can be determined according to Q matrix and then the directions of signals could be computed by the ESPRIT algorithm. To determine the source number and subspace, the computation complexity of the proposed algorithm is approximated as (2 log2 n + 2.67)M^3, where n is the power of covariance matrix and M is the number of array elements. Compared with the Single Vector Decomposition (SVD) based algorithm, it has a substantial computational saving with the approximation performance. The simulation results demonstrate its effectiveness and robustness.
关 键 词:ESPRIT Direction Of Arrival (DOA) Array signal processing Source number detection Power method
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229