Sorption of 1-naphthol by plant cuticular fractions  被引量:3

Sorption of 1-naphthol by plant cuticular fractions

在线阅读下载全文

作  者:CHEN Bao-liang LI Yun-gui 

机构地区:[1]Department of Environmental Science, Zhejiang University, Hangzhou 310028, China

出  处:《Journal of Environmental Sciences》2007年第10期1214-1220,共7页环境科学学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China (No.20577041,40671168);New Century ExceLlent Talents in University (No.NCET-05-0525).

摘  要:The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment, but sorption mechanism is still not fully understood. In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction. Toward this end, cuticular materials were isolated from the fruits of tomato by chemical method. The tomato cuticle sheet consisted of waxes (6.5 wt%), cuticular monomer (69.5 wt%), and polysaccharide (24.0 wt%). Isotherms of 1-naphthol to the cuticular fractions were nonlinear (N value (0.82 - 0.90)) at the whole tested concentration ranges. The K∞/Kow ratios for bulk cuticle (TC1), dewaxed cuticle (TC2), cutin (TC4), and desugared cuticle (TC5) were larger than unity, suggested that tomato bulk cuticle and cutin are much powerful sorption medium. Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3). The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material. There was a linear negative trend between K∞ values and the amount of polysaccharides or fraction's polarities ((N+O)/C); while a linear positive relationship between K∞ values and the content ofcutin monomer (linear R^2 = 0.993) was observed for present in the cuticular fractions. Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer, contributing to 91.7% of the total sorption of tomato bulk cuticle.The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment, but sorption mechanism is still not fully understood. In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction. Toward this end, cuticular materials were isolated from the fruits of tomato by chemical method. The tomato cuticle sheet consisted of waxes (6.5 wt%), cuticular monomer (69.5 wt%), and polysaccharide (24.0 wt%). Isotherms of 1-naphthol to the cuticular fractions were nonlinear (N value (0.82 - 0.90)) at the whole tested concentration ranges. The K∞/Kow ratios for bulk cuticle (TC1), dewaxed cuticle (TC2), cutin (TC4), and desugared cuticle (TC5) were larger than unity, suggested that tomato bulk cuticle and cutin are much powerful sorption medium. Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3). The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material. There was a linear negative trend between K∞ values and the amount of polysaccharides or fraction's polarities ((N+O)/C); while a linear positive relationship between K∞ values and the content ofcutin monomer (linear R^2 = 0.993) was observed for present in the cuticular fractions. Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer, contributing to 91.7% of the total sorption of tomato bulk cuticle.

关 键 词:plant cuticle 1-NAPHTHOL SORPTION cutin monomer 

分 类 号:Q946[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象