A Variational ODE and its Application to an Elliptic Problem  

A Variational ODE and its Application to an Elliptic Problem

在线阅读下载全文

作  者:Huan-song Zhou Hong-bo Zhu 

机构地区:[1]Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, China

出  处:《Acta Mathematicae Applicatae Sinica》2007年第4期685-696,共12页应用数学学报(英文版)

基  金:the National Natural Science Foundation of China(No.10571174,No.10631030);CAS:KJCX3SYW-S03

摘  要:In this paper, we consider the following ODE problem { (-u"(τ)+(N-1)(N-3)/4τ^2 )u(τ)+λu(τ)=f(τ,τ(1-N)/2 u)u(τ),τ〉0, u∈H, N≥3. (P),where f ∈ C((0,+∞) ×R,R), f(τ,s) goes to p(τ) and q(τ) uniformly in τ 〉 0 as s→ 0 and s→+∞ respectively, 0≤ p(τ) ≤ q(τ) ∈L^∞(0,∞). Moreover, for τ 〉 0, f(τ, s) is nondecreasing in s≥ 0. Some existence and non-existence of positive solutions to problem (P) are proved without assuming that p(τ) = 0 and q(τ) has a limit at infinity. Based on these results, we get the existence of positive solutions for an elliptic problem.In this paper, we consider the following ODE problem { (-u"(τ)+(N-1)(N-3)/4τ^2 )u(τ)+λu(τ)=f(τ,τ(1-N)/2 u)u(τ),τ〉0, u∈H, N≥3. (P),where f ∈ C((0,+∞) ×R,R), f(τ,s) goes to p(τ) and q(τ) uniformly in τ 〉 0 as s→ 0 and s→+∞ respectively, 0≤ p(τ) ≤ q(τ) ∈L^∞(0,∞). Moreover, for τ 〉 0, f(τ, s) is nondecreasing in s≥ 0. Some existence and non-existence of positive solutions to problem (P) are proved without assuming that p(τ) = 0 and q(τ) has a limit at infinity. Based on these results, we get the existence of positive solutions for an elliptic problem.

关 键 词:Elliptic equation asymptotically linear mountain pass theorem 

分 类 号:O18[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象