不可压饱和粘弹性多孔介质固结问题的Gurtin型变分原理  

Gurtin Type Variational Principles for Incompressible Saturated Viscoelastic Porous Media

在线阅读下载全文

作  者:何录武[1] 张玉柱[2] 杨骁[3] 

机构地区:[1]华东理工大学机械与动力工程学院,上海200237 [2]洛阳大学基础部物理系,河南471023 [3]上海大学土木工程系,上海200072

出  处:《力学季刊》2007年第3期431-435,共5页Chinese Quarterly of Mechanics

基  金:国家自然科学基金(10272070);上海市重点学科建设项目(Y0103)

摘  要:基于多孔介质理论,在固相骨架和孔隙流体微观不可压,固相骨架小变形且满足线性粘弹性积分型本构关系的假定下,利用卷积积分的性质,本文首先建立了以固相骨架位移、孔隙流体相对速度和孔隙流体压力为宗量的流体饱和粘弹性多孔介质固结问题的一个Gurtin型变分原理。其次,利用Lagrange乘子法解除相关的变分约束条件,建立了流体饱和粘弹性多孔介质固结问题的若干广义Gurtin型变分原理,包括第三类的Hu-Washizu型变分原理。最后,简单讨论了等价初边值问题的相应变分原理。这些Gurtin型变分原理的建立不仅丰富了饱和粘弹性多孔介质的相关理论,而且为相关数值模拟方法,如有限元法、无网格法等的建立奠定了理论基础。Based on the theory of porous media, with the assumptions of microscopic incompressibility of solid skeleton and pore fluid as well as the small deformation of solid phase, a Gurtintype variational principle for consolidations of fluid-saturated viscoelastic porous media, in which the solid skeleton satisfies the general linear integral-type viscoelastic constitutive equation, was first established by using convolution integral, whose basic unknowns are the displacement of solid skeleton, relative velocity and pressure of the pore fluid. With the Lagrange multiplier to release the various variational constraints, several Gurtintype variational principles, including Hu-Washizu variational principle, were developed. At last, a variational principle for an equivalent initial boundary value problem was discussed briefly. These variational principles not only enrich the context of ftuidsaturated viscoelastie viscoelastic porous media, but also provide a theoretical basis for numerical simulation methods, such as finite element method and meshless method.

关 键 词:多孔介质理论 流体饱和多孔介质 固结问题 Gurtin型变分原理 

分 类 号:O357.3[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象