检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子与信息学报》2007年第9期2047-2049,共3页Journal of Electronics & Information Technology
基 金:广东省自然科学基金项目(032030)资助课题
摘 要:提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩阵使传统的Fisher准则能够最优化,克服了边缘类对选择最佳投影方向的影响;同时,利用因数分解的方法避免了对矩阵求逆,解决了小样本问题。依据经验选取适当的e值,得到最佳的识别效果。实验结果表明,人脸识别效果优于传统LDA方法。Extracting the most discriminant low-dimensional face feature is an extremely critical step in Face Recognition (FR) systems. Linear Discriminant Analysis (LDA) is one of the most popular linear classification techniques for feature extraction. An optimized LDA algorithm is introduced to overcome questions existing in the traditional LDA algorithm for FR in this paper. The between-class scatter matrix is redefined in order to make the traditional Fisher criterion optimal and eliminate the effect that the edge of class has on selecting the optimal projection; at the same time, it avoids computing the inverse of matrix by means of factorization, and solves the Small Sample Size (SSS) problem. Adopting experiential method, the appropriate value of e is found, and then the optimal effect of face recognition is got. Experimental results show the recognition rate of this method is superior to the traditional LDA.
关 键 词:线性判别分析(LDA) 人脸识别 类间离散度 类内离散度 特征提取
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13