检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学语言语音教育部-微软重点实验室,哈尔滨150001
出 处:《电子与信息学报》2007年第9期2082-2085,共4页Journal of Electronics & Information Technology
基 金:国家自然科学基金(60373101);国家863计划(2004AA117010-08)资助课题
摘 要:该文以处理大规模真实文本为目标,把句法分析分解为分词/词性标注、短语识别两个部分。首先提出了一个一体化的分词/词性标注方法,该方法在隐马尔科夫模型(HMM)的基础上引入词汇信息,既保留了HMM简单快速的特点,又有效提高了标注精度;然后应用中心驱动模型进行短语识别,这是一个词汇化的英文句法分析模型,该文将其同分词/词性标注模型结合进行汉语句法分析。在公共的测试集上对句法分析器的性能进行了评价,精确率和召回率分别为77.57%和74.96%,这一结果要明显好于目前唯一可比的工作。In order to process large-scale real text, a method of building Chinese parser based on lexicalized model is proposed. First, a unified approach for segmentation and part of speech tagging is proposed based on hidden Markov model. The method not only conservers the merits of HMM which is simple and efficient but also improves the tagging accuracy. Then the head-driven model is used to recognize phrases. Head-driven model is a well-known English parsing model; we combine it with segmentation and POS tagging model and thus build a Chinese parser that can operate at the character level. The parser is evaluated on the standard test set. It achieves 77.57% precision and 74.96% recall and outperforms the only previous comparable work significantly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40