Study on the long-distance target apperception techniques for underwater vehicles  被引量:2

Study on the long-distance target apperception techniques for underwater vehicles

在线阅读下载全文

作  者:Yang Xudong Huang Jianguo Zhang Qunfei Tang Qi 

机构地区:[1]Dept. of Electronics and Communication Engineering, Coll. of Marine Engineering, Northwestern Polytechnical Univ., Xi'an 710072, P. R. China

出  处:《Journal of Systems Engineering and Electronics》2007年第3期484-490,共7页系统工程与电子技术(英文版)

摘  要:The limited physical size for autonomous underwater vehicles (AUV) or unmanned underwater vehicles (UUV) makes it difficult to acquire enough space gain for localizing long-distance targets. A new technique about long-distance target apperception with passive synthetic aperture array for underwater vehicles is presented. First, a synthetic aperture-processing algorithm based on the FFT transform in the beam space (BSSAP) is introduced. Then, the study on the flank array passive long-distance apperception techniques in the frequency scope of 11-18 kHz is implemented from the view of improving array gains, detection probability and augmenting detected range under a certain sea environment. The results show that the BSSAP algorithm can extend the aperture effectively and improve detection probability. Because of the augment of the transmission loss, the detected range has the trend of decline with the increase of frequency under the same target source level. The synthesized array could improve the space gain by nearly 7 dB and SNR is increased by about 5 dB. The detected range is enhanced to nearly 2 km under the condition of 108-118 dB of the target source level for AUV system in measurement interval of nearly 1 s.The limited physical size for autonomous underwater vehicles (AUV) or unmanned underwater vehicles (UUV) makes it difficult to acquire enough space gain for localizing long-distance targets. A new technique about long-distance target apperception with passive synthetic aperture array for underwater vehicles is presented. First, a synthetic aperture-processing algorithm based on the FFT transform in the beam space (BSSAP) is introduced. Then, the study on the flank array passive long-distance apperception techniques in the frequency scope of 11-18 kHz is implemented from the view of improving array gains, detection probability and augmenting detected range under a certain sea environment. The results show that the BSSAP algorithm can extend the aperture effectively and improve detection probability. Because of the augment of the transmission loss, the detected range has the trend of decline with the increase of frequency under the same target source level. The synthesized array could improve the space gain by nearly 7 dB and SNR is increased by about 5 dB. The detected range is enhanced to nearly 2 km under the condition of 108-118 dB of the target source level for AUV system in measurement interval of nearly 1 s.

关 键 词:long-distance apperception synthetic aperture processing array gain detection probability detectedrange. 

分 类 号:TN958[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象