检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学计算机学院,江苏徐州221116 [2]中国矿业大学环测学院,江苏徐州221116
出 处:《计算机工程与应用》2007年第29期220-221,248,共3页Computer Engineering and Applications
基 金:国家自然科学基金( the National Natural Science Foundation of China under Grant No.50534050)
摘 要:贝叶斯网络是目前不确定知识和推理领域最有效的理论模型之一。为了正确预测煤与瓦斯突出的危险性,提出了一种基于贝叶斯网络的煤与瓦斯突出预测方法。在综合影响煤与瓦斯突出的因素和领域专家知识的基础上建立了网络结构,通过对先验知识和样本数据的学习,实现了煤与瓦斯突出的预测,取得了较好的效果。实验表明,该模型网络学习速度快,准确性高,是一种有效的煤与瓦斯突出危险性预测方法。Bayesian network is one of the most efficient models in the uncertain knowledge and reasoning field.In order to accurately predict the risk of coal and gas outburst,a coal and gas outburst prediction model based on Bayesian network has been put forward in the paper.The network model has been created on the basis of the factor in relation to coal and gas outburst and the knowledge of the field experts.After studying from the prototype data,the prediction of coal and gas outburst has been successfully achieved and has good results.The experiment demonstrates that the prediction model has a fast study speed and good prediction accuracy,which is an efficient way in predicting coal and gas outburst.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229