检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南师范大学数学科学学院,广州510631 [2]福州大学数学与计算机科学学院,福州350002
出 处:《中国科学(A辑)》2007年第10期1193-1206,共14页Science in China(Series A)
基 金:国家自然科学基金(批准号:10471048);高等学校博士点基金(批准号:20050574002);福建省自然科学基金(批准号:Z0511013);福建省教育厅基金(批准号:JB04038)资助项目
摘 要:在C^n中的有界完全Reinhardt域Ω上推广的Roper-Suffridge算子Φ(f)定义为Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)(z)=(rf(z_1/r),((rf(z_1/r))/z_1)^(β_2)(f′(z_1/r))~γ_2_(z_2,…,)((rf(z_1/r))/z_1)^(β_n)(f′(z_1/r))^(γ_n)_(z_n),其中n≥2,(z_1,z_2,…,z_n)∈Ω,r=r(Ω)=sup{|z_1|:(z_1,z_2,…,z_n)∈Ω},0≤γ_j≤1-β_j,0≤β_j≤1,这里选取幂函数的单值解析分支,使得((f(z_1))/z_1)^(β_j)|_(z_1=0)=1和(f′(z_1))^(γ_j)|_(z_1=0)=1,j= 2,…,n.证明了Ω上的算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)是将S_α~*(U)的子集映入S_α~*(Ω)(0≤α<1),且对于一些合适的常数β_j,γ_j,p_j,D_p上的这个算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)保持α阶星形性或保持β型螺形性,其中(?) U是复平面C上的单位圆,S_α~*(Ω)是Ω上所有正规化α阶星形映射所成的类.也得到:对于某些合适的常数β_j,γ_j,p_j和0≤α<1,Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)∈S_α~*(D_p)当且仅当f∈S_α~*(U).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38