检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学土木建筑工程学院 [2]四川大学水利水电工程学院,四川成都610065
出 处:《岩石力学与工程学报》2007年第3期455-458,共4页Chinese Journal of Rock Mechanics and Engineering
基 金:国家自然科学基金资助项目(40472138)
摘 要:尽管简化Bishop法忽略了条间剪力,且不严格满足平衡条件,但其计算圆弧滑面的安全系数与其他严格条分法安全系数十分接近,这是边坡理论中长期未解之谜。研究结果表明,尽管简化Bishop法公式中没有出现条间剪力,但不意味着条间剪力实际为0,而是其某种组合式为0。因而可找出一组条间剪力分布,既使滑体整体满足所有平衡条件,又使这种条间剪力组合式为0。因此,简化Bishop法实质上已自行满足严格平衡条件,因而它也可称为“严格条分法”。 Although the inter-slice shear forces are ignored in the simplified Bishop method and the complete equilibrium conditions are not completely satisfied,the achieved factors of safety of circular slip surfaces are in excellent agreement with the results of those rigorous methods.This is the one of the most difficult problems that have not been solved for a long time.The study shows that the absence of inter-slice shear forces in the factor of safety equation of the simplified Bishop method does not mean they actually disappear,but a certain term involving inter-slice shear forces equals zero.A set of inter-slice shear forces could be always found where not only the sliding body satisfies the complete equilibrium conditions,but also makes that term equals zero.Therefore,it is implied that the simplified Bishop method automatically satisfies the rigorous equilibrium conditions,which can be regarded as a rigorous inter-slice method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.64.87