Approximately Linear Mappings in Banach Modules over a C~*-algebra  被引量:1

Approximately Linear Mappings in Banach Modules over a C~*-algebra

在线阅读下载全文

作  者:Choonkil PARK Jian Lian CUI 

机构地区:[1]Department of Mathematics, Hanyang University, Seoul 133 791, Republic of Korea [2]Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2007年第11期1919-1936,共18页数学学报(英文版)

基  金:Grant No. F01-2006-000-10111-0 from the Korea Science & Engineering Foundation;The second author is supported by National Natural Science Foundation of China (No.10501029);Tsinghua Basic Research Foundation (JCpy2005056);the Specialized Research Fund for Doctoral Program of Higher Education

摘  要:Let X and Y be vector spaces. The authors show that a mapping f : X →Y satisfies the functional equation 2d f(∑^2d j=1(-1)^j+1xj/2d)=∑^2dj=1(-1)^j+1f(xj) with f(0) = 0 if and only if the mapping f : X→ Y is Cauchy additive, and prove the stability of the functional equation (≠) in Banach modules over a unital C^*-algebra, and in Poisson Banach modules over a unital Poisson C*-algebra. Let A and B be unital C^*-algebras, Poisson C^*-algebras or Poisson JC^*- algebras. As an application, the authors show that every almost homomorphism h : A →B of A into is a homomorphism when h((2d-1)^nuy) =- h((2d-1)^nu)h(y) or h((2d-1)^nuoy) = h((2d-1)^nu)oh(y) for all unitaries u ∈A, all y ∈ A, n = 0, 1, 2,.... Moreover, the authors prove the stability of homomorphisms in C^*-algebras, Poisson C^*-algebras or Poisson JC^*-algebras.Let X and Y be vector spaces. The authors show that a mapping f : X →Y satisfies the functional equation 2d f(∑^2d j=1(-1)^j+1xj/2d)=∑^2dj=1(-1)^j+1f(xj) with f(0) = 0 if and only if the mapping f : X→ Y is Cauchy additive, and prove the stability of the functional equation (≠) in Banach modules over a unital C^*-algebra, and in Poisson Banach modules over a unital Poisson C*-algebra. Let A and B be unital C^*-algebras, Poisson C^*-algebras or Poisson JC^*- algebras. As an application, the authors show that every almost homomorphism h : A →B of A into is a homomorphism when h((2d-1)^nuy) =- h((2d-1)^nu)h(y) or h((2d-1)^nuoy) = h((2d-1)^nu)oh(y) for all unitaries u ∈A, all y ∈ A, n = 0, 1, 2,.... Moreover, the authors prove the stability of homomorphisms in C^*-algebras, Poisson C^*-algebras or Poisson JC^*-algebras.

关 键 词:C^*-algebra homomorphism stability Poisson C^*-algebra homomorphism Poisson Banach module over Poisson C^*-algebra Poisson JC^*-algebra homomorphism 

分 类 号:O177.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象