检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Choonkil PARK Jian Lian CUI
机构地区:[1]Department of Mathematics, Hanyang University, Seoul 133 791, Republic of Korea [2]Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2007年第11期1919-1936,共18页数学学报(英文版)
基 金:Grant No. F01-2006-000-10111-0 from the Korea Science & Engineering Foundation;The second author is supported by National Natural Science Foundation of China (No.10501029);Tsinghua Basic Research Foundation (JCpy2005056);the Specialized Research Fund for Doctoral Program of Higher Education
摘 要:Let X and Y be vector spaces. The authors show that a mapping f : X →Y satisfies the functional equation 2d f(∑^2d j=1(-1)^j+1xj/2d)=∑^2dj=1(-1)^j+1f(xj) with f(0) = 0 if and only if the mapping f : X→ Y is Cauchy additive, and prove the stability of the functional equation (≠) in Banach modules over a unital C^*-algebra, and in Poisson Banach modules over a unital Poisson C*-algebra. Let A and B be unital C^*-algebras, Poisson C^*-algebras or Poisson JC^*- algebras. As an application, the authors show that every almost homomorphism h : A →B of A into is a homomorphism when h((2d-1)^nuy) =- h((2d-1)^nu)h(y) or h((2d-1)^nuoy) = h((2d-1)^nu)oh(y) for all unitaries u ∈A, all y ∈ A, n = 0, 1, 2,.... Moreover, the authors prove the stability of homomorphisms in C^*-algebras, Poisson C^*-algebras or Poisson JC^*-algebras.Let X and Y be vector spaces. The authors show that a mapping f : X →Y satisfies the functional equation 2d f(∑^2d j=1(-1)^j+1xj/2d)=∑^2dj=1(-1)^j+1f(xj) with f(0) = 0 if and only if the mapping f : X→ Y is Cauchy additive, and prove the stability of the functional equation (≠) in Banach modules over a unital C^*-algebra, and in Poisson Banach modules over a unital Poisson C*-algebra. Let A and B be unital C^*-algebras, Poisson C^*-algebras or Poisson JC^*- algebras. As an application, the authors show that every almost homomorphism h : A →B of A into is a homomorphism when h((2d-1)^nuy) =- h((2d-1)^nu)h(y) or h((2d-1)^nuoy) = h((2d-1)^nu)oh(y) for all unitaries u ∈A, all y ∈ A, n = 0, 1, 2,.... Moreover, the authors prove the stability of homomorphisms in C^*-algebras, Poisson C^*-algebras or Poisson JC^*-algebras.
关 键 词:C^*-algebra homomorphism stability Poisson C^*-algebra homomorphism Poisson Banach module over Poisson C^*-algebra Poisson JC^*-algebra homomorphism
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.114