检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李伯臧[1] 张德刚[2] 吴建华[3] 阎凤利[4]
机构地区:[1]中国科学院物理研究所 [2]四川师范大学固体物理研究所 [3]北京大学物理系 [4]河北师范大学物理系
出 处:《物理学报》1997年第2期227-237,共11页Acta Physica Sinica
基 金:国家自然科学基金
摘 要:对于Hamiltonian随时间作周期变化的量子系统中状态的演化,Bloch定理亦成立,并可据此定义一种新的几何相位———Bloch相位.证明用这种新的几何相位可以把迄今发现的所有同步(即量子态演化一周后获得的)几何相位统一起来,即Bloch相位等于Pancharatnam相位、AharonovAnandan相位和LewisRiesenfeld相位,并且在绝热条件下化为Bery相位.为此,先对Pancharatnam相位、AharonovAnandan相位和LewisRiesenfeld相位的定义作等价的改变,使它们变得有物理意义,并把LewisRiesenfeld相位和Berry相位推广到简并情形.Abstract The Bloch theorem holds also for the evolution of states in the cyclic quantum systems in which the Hamiltonian varies cyclically with time.In light of the theorem a new type of geometric phases——Bloch phases——is defined.In this paper it is shown that the resonant (i.e.,acquired by certain states after evolving a cycle)geometric phases so far discovered can all be unified into the Bloch phases.That is,the Bloch phases are identical with the Pancharatnam phases,Aharonov Anandan phases and Lewis Riesenfeld phases,and reduce to the Berry phases in adiabatic approximation.To this end,the equivalent alternation of defining the former three types of quantum phases and the generalization of Lewis Riesenfeld phases and Berry phases to the degenerate case are made.In addition,two methods are given for efficiently searching for the Bloch phases.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229