检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学信息系统与管理学院,长沙410073
出 处:《计算机工程》2007年第15期40-42,63,共4页Computer Engineering
摘 要:为提高支持向量回归算法的学习能力和泛化性能,提出了一种优化支持向量回归参数的混合选择算法。根据训练样本的规模和噪声水平等信息,确定支持向量回归参数的取值范围,用实数编码的免疫遗传算法搜索最佳参数值。混合选择算法具有较高的精度和效率,在选择支持向量回归参数时,不必考虑模型的复杂度和变量维数。仿真实验结果表明,该算法是选择支持向量回归参数的有效方法,应用到函数逼近问题时具有优良的性能。In order to improve support vector regression(SVR) learning ability and generalization performance, a hybrid selection algorithm for optimizing SVR parameters is proposed. The ranges of the parameters are set according to the information about the training data size and noise level in training samples, and a real-coding based immune genetic algorithm is employed to search the optimal parameters. Hybrid selection algorithm is a precise and efficient method and it need not to consider SVR dimensionality and complexity. Simulation experiments show that the proposed method is an effective approach for SVR parameters selection with good performance on function approximation problem.
关 键 词:支持向量回归 参数选择 训练样本信息 免疫遗传算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147