机构地区:[1]Nanjing University of Information Science & Technology,Nanjing 210044 Zhejiang Meteorological Science Institute,Hangzhou 310017 [2]Nanjing University of Information Science & Technology,Nanjing 210044 Jiangsu Meterorological Observatory,Nanjing 210008 [3]Nanjing University of Information Science & Technology,Nanjing 210044 [4]Chinese Academy of Meteorological Sciences,Beijing 100081
出 处:《Acta meteorologica Sinica》2007年第3期290-301,共12页
基 金:the project of the National Natural Science Foundation of China under Grant No.40333028;Gansu Province Tenth Five Plan Key Project(CGS012-A45-118).
摘 要:In the context of advection dynamics, 19 experiments (Exps.) are performed using a quasi-geostrophic barotropic vorticity equation model to explore the condition for the mergence of binary vortices and the self-organization of the larger scale vortex. Results show that the initial distance between the centers of binary vortices and the non-axisymmetric distributions of their initial vorticity are two factors affecting the mergence of binary vortices. There is a critical distance for the mergence of initial symmetric binary vortices, however, the mergence of initial non-axisymmetric binary vortices is also affected by the asymmetric structure of initial vortices. The self-organization processes in 19 experiments can be classified into two types: one is the merging of identical, axisymmetric binary vortices in which the interaction of the two vortices undergoes slowly change, rapid change, and the formation, stretching, and development of the filaments of vorticity, and the two vortices merge into a symmetric vortex, with its vorticity piled up in the inner region coming from the two initial vortices, and the vorticity of the spiral band in the outer region from the stretching of the filaments of the two initial vortices. And the other type is the merging of the two non-axisymmetric initial vortices of an elliptic vortex and an eccentric vortex in which the elliptic vortex, on the one hand, mutually rotates, and on the other hand moves towards the center of the computational domain, at the same time expands its vorticity area, and at last forms the inner core of resultant state vortex; and the eccentric vortex mutually rotates, meanwhile continuously stretches, and finally forms the spiral band of resultant state vortex. The interaction process is characteristic of the vorticity piled up in the inner core region of resultant state vortex originating from the elliptic vortex and the vorticity in spiral band mainly from the successive stretch and rupture of the eccentric vortex.In the context of advection dynamics, 19 experiments (Exps.) are performed using a quasi-geostrophic barotropic vorticity equation model to explore the condition for the mergence of binary vortices and the self-organization of the larger scale vortex. Results show that the initial distance between the centers of binary vortices and the non-axisymmetric distributions of their initial vorticity are two factors affecting the mergence of binary vortices. There is a critical distance for the mergence of initial symmetric binary vortices, however, the mergence of initial non-axisymmetric binary vortices is also affected by the asymmetric structure of initial vortices. The self-organization processes in 19 experiments can be classified into two types: one is the merging of identical, axisymmetric binary vortices in which the interaction of the two vortices undergoes slowly change, rapid change, and the formation, stretching, and development of the filaments of vorticity, and the two vortices merge into a symmetric vortex, with its vorticity piled up in the inner region coming from the two initial vortices, and the vorticity of the spiral band in the outer region from the stretching of the filaments of the two initial vortices. And the other type is the merging of the two non-axisymmetric initial vortices of an elliptic vortex and an eccentric vortex in which the elliptic vortex, on the one hand, mutually rotates, and on the other hand moves towards the center of the computational domain, at the same time expands its vorticity area, and at last forms the inner core of resultant state vortex; and the eccentric vortex mutually rotates, meanwhile continuously stretches, and finally forms the spiral band of resultant state vortex. The interaction process is characteristic of the vorticity piled up in the inner core region of resultant state vortex originating from the elliptic vortex and the vorticity in spiral band mainly from the successive stretch and rupture of the eccentric vortex.
关 键 词:VORTEX mergence SELF-ORGANIZATION
分 类 号:P434[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...