检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chen Zhang Xin Wen Guo Ya Nan Wang Xiang Sheng Wang Chun Shan Song
机构地区:[1]State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China [2]Clean Fuels and Catalysis Program, The Energy Institute and Department of Energy & Geo-Environmental Engineering, The Penmylvania State University, 209 Academic Projects Building, University Park, PA 16802, USA
出 处:《Chinese Chemical Letters》2007年第10期1281-1284,共4页中国化学快报(英文版)
摘 要:The methylation of 2-methylnaphthalene (2-MN) into 2,6-dimethylnaphthalene (2,6-DMN) was investigated over the solid acid catalysts. The results show that HZSM-5 modified by NH4F has better catalytic performance than parent HZSM-5 due to the decrease in the acidity. When NH4F/HZSM-5 is further modified by SrO, its catalytic activity decreases due to the decrease in the total acid amount and acidic strength. As a result, the comprehensive modification of NH4F and SrO leads to the inere, ase in the 2,6- DMN selectivity (2,6-DMN to DMN), up to 64.8% when 2-MN conversion is 10%. We calculated the ESP charge by density functional theory and the results show that the 6-position in 2-MN has higher ESP charge value than 7-position. The formation of 2,6-DMN is favored energetically as compared to that for 2,7-DMN. This suggests during the alkylation of 2-MN inside the ZSM-5 channel, the formation of 2,6-DMN is favored electronically than that of 2,7-DMN. Hence, lowering the acidity of catalyst is a key factor to obtain high selectivity of 2,6-DMN.The methylation of 2-methylnaphthalene (2-MN) into 2,6-dimethylnaphthalene (2,6-DMN) was investigated over the solid acid catalysts. The results show that HZSM-5 modified by NH4F has better catalytic performance than parent HZSM-5 due to the decrease in the acidity. When NH4F/HZSM-5 is further modified by SrO, its catalytic activity decreases due to the decrease in the total acid amount and acidic strength. As a result, the comprehensive modification of NH4F and SrO leads to the inere, ase in the 2,6- DMN selectivity (2,6-DMN to DMN), up to 64.8% when 2-MN conversion is 10%. We calculated the ESP charge by density functional theory and the results show that the 6-position in 2-MN has higher ESP charge value than 7-position. The formation of 2,6-DMN is favored energetically as compared to that for 2,7-DMN. This suggests during the alkylation of 2-MN inside the ZSM-5 channel, the formation of 2,6-DMN is favored electronically than that of 2,7-DMN. Hence, lowering the acidity of catalyst is a key factor to obtain high selectivity of 2,6-DMN.
关 键 词:2 6-DMN Modification Selectivity ESP charge
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.100.204