基于重构核粒子法的带孔薄板模态分析研究  被引量:1

Modal Analysis of Perforated Thin Plate Based on Reproducing Kernel Particle Method(RKPM)

在线阅读下载全文

作  者:张建平[1] 龚曙光[1] 黄云清[1] 聂松辉[1] 陈仁科[1] 

机构地区:[1]湘潭大学,湘潭411105

出  处:《机械科学与技术》2007年第10期1366-1370,共5页Mechanical Science and Technology for Aerospace Engineering

基  金:国家自然科学基金项目(50475143;10371104);国家重点基础研究发展计划基金项目(2005CB321701);教育部博士点研究基金项目(20040530001);湖南省教育厅优秀青年项目(06QDZ16)资助

摘  要:无网格法是一种新颖的工程数值计算方法,与有限元法相比,具有很多独特的优势。重构核粒子法具有变时-频特性和多分辨率特性等优点,在结构动力学中有广泛的应用。本文针对带孔薄板这一不连续问题,根据无网格法和板壳振动的基本理论,采用了可视性准则处理场函数的不连续性,编写了基于重构核粒子法的模态分析程序,得到了不同边界条件下带孔薄板的前五阶固有频率和模态,并和有限元分析结果进行了比较。算例表明该方法收敛性好、精度高,为带孔薄板的模态分析提供了一种新的求解方法。Reproducing kernel particle method(RKPM) is a widely applied meshless method in structural dynamics owing to its merit of variable time-frequency properties and multi-resolution power characteristics. This paper aims at the discontinuity of a perforated thin plate, and according to the basic theory of the shell-plate vibration, it uses visibility criterion to deal with the discontinuity of field functions, and the programs of modal analysis based on RKPM were developed. The first five natural frequencies and modals of perforated thin plates with different boundaries were obtained, and then these results were compared with finite element analysis results. Numerical examples show that this method has good convergence and accuracy, and provides a new solution for modal analysis of a perforated thin plate.

关 键 词:模态分析 重构核粒子法 不连续性 带孔薄板 

分 类 号:O326[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象