Interaction of Point Defects with Twin Boundaries in Copper  

Interaction of Point Defects with Twin Boundaries in Copper

在线阅读下载全文

作  者:S. A. Ahmad Razia Ramzan 

机构地区:[1]Department of Physics, Islamia University of Bahawalpur, Bahawalpur, Pakistan

出  处:《Chinese Physics Letters》2007年第9期2631-2634,共4页中国物理快报(英文版)

摘  要:The interaction between small vacancy clusters and twin boundaries in copper is studied by using many-body potential developed by Ackland et aL for fcc metals. The interaction energies of single-, di- and tri-vacancy clusters with (111) and (112) twin boundaries are computed using well established simulation techniques. For (111) twins the vacancy clusters are highly repelled when they are on the adjacent planes, and are attracted when they are away from the boundary. In the case of (112) twins, vacancy clusters are more attracted to the boundary when they are near the boundary as compared to away from it. Vacancy clusters on both the sides of the boundary are also investigated, and it is observed that the clusters energetically prefer to lie on the off-mirror sites as compared to the mirror position across the twin.The interaction between small vacancy clusters and twin boundaries in copper is studied by using many-body potential developed by Ackland et aL for fcc metals. The interaction energies of single-, di- and tri-vacancy clusters with (111) and (112) twin boundaries are computed using well established simulation techniques. For (111) twins the vacancy clusters are highly repelled when they are on the adjacent planes, and are attracted when they are away from the boundary. In the case of (112) twins, vacancy clusters are more attracted to the boundary when they are near the boundary as compared to away from it. Vacancy clusters on both the sides of the boundary are also investigated, and it is observed that the clusters energetically prefer to lie on the off-mirror sites as compared to the mirror position across the twin.

关 键 词:CLOSE-PACKED CLUSTERS CRYSTALS VACANCIES METALS 

分 类 号:O41[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象