Electrochemical behavior of diverse vanadium ions at modified graphite felt electrode in sulphuric solution  

Electrochemical behavior of diverse vanadium ions at modified graphite felt electrode in sulphuric solution

在线阅读下载全文

作  者:李晓刚 黄可龙 刘素琴 陈立泉 

机构地区:[1]School of Chemistry and Chemical Engineering,Central South University

出  处:《Journal of Central South University of Technology》2007年第1期51-56,共6页中南工业大学学报(英文版)

基  金:Project (03GKY3015) supported by the Foundation of Hunan Provincial Department of Science and Technology

摘  要:PAN-based graphite felt (PGF) treated in 98% sulphuric acid for 5 h and then kept at 450 ℃ for 2 h was evaluated for their electrochemical performance as electrodes of vanadium redox battery (VRB). Structure and characteristic of treated PAN-based graphite felt (TPGF) were determined by means of Fourier Transform Infi-ared Spectroscopy, Scanning Electron Microscopy, Brunauer-Emmett-Teller surface area analysis and VRB test system. The results show that the acid and heat synergistic effect increase the number of --COOH functional groups on the PGF surface, and the PGF is eroded by sulphuric acid oxidation, resulting in the surface area increases from 0.31 m^2/g to 0.45 m^2/g. The V( Ⅱ )/V(Ⅲ) redox reaction is electrochemically reversible on the TPGF electrode, while the V(Ⅳ)/V(Ⅴ) couple is a quasi reversible process. The diffusion coefficients of the oxidation for V(Ⅳ)/V(Ⅴ) obtained from the scope of peak current Ip vs scan rate v^1/2 is 4.4×10^-5 cm^2/s. The improvement of electrochemical activity for the electrode is mainly ascribed to the increase of the number of ---COOH groups on the TPGF, which behaves as active sites catalyzing the vanadium species reactions and accelerating electron transfer reaction and oxygen transfer.PAN-based graphite felt (PGF) treated in 98% sulphuric acid for 5 h and then kept at 450 ℃ for 2 h was evaluated for their electrochemical performance as electrodes of vanadium redox battery (VRB). Structure and characteristic of treated PAN-based graphite felt (TPGF) were determined by means of Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Brunauer-Emmett-Teller surface area analysis and VRB test system. The results show that the acid and heat synergistic effect increase the number of —COOH functional groups on the PGF surface, and the PGF is eroded by sulphuric acid oxidation, resulting in the surface area increases from 0.31 m2/g to 0.45 m2/g. The V(Ⅱ)/V(Ⅲ) redox reaction is electrochemically reversible on the TPGF electrode, while the V(Ⅳ)/V(Ⅴ) couple is a quasi reversible process. The diffusion coefficients of the oxidation for V(Ⅳ)/V(Ⅴ) obtained from the scope of peak current Ip vs scan rate v1/2 is 4.4×10-5 cm2/s. The improvement of electrochemical activity for the electrode is mainly ascribed to the increase of the number of —COOH groups on the TPGF, which behaves as active sites catalyzing the vanadium species reactions and accelerating electron transfer reaction and oxygen transfer.

关 键 词:VANADIUM redox flow battery graphite felt diffusion coefficient. 

分 类 号:O646.54[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象