Reductive Dechlorination of p-Chlorophenol by Nanoscale Iron  

Reductive Dechlorination of p-Chlorophenol by Nanoscale Iron

在线阅读下载全文

作  者:RONG CHENG JIAN-LONG WANG WEI-XIAN ZHANG 

机构地区:[1]Laboratory of Environmental Technology, INET,, Tsinghua University, Beijing 100084, China [2]Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015-3176, USA

出  处:《Biomedical and Environmental Sciences》2007年第5期410-413,共4页生物医学与环境科学(英文版)

基  金:The work was supported by the National Natural Science Foundation of China (Grant No. 50325824; 50678089).

摘  要:Objective To investigate reductive dechlorination of 4-chlorophenol (4-CP) by nanoscale Fe^0 under different conditions. Methods Nanoscale Fe^0 was synthesized by using reductive method. 4-CP and its intermediate products were analyzed by HPLC. Chlorine ion was quantified with DX-100 ion chromatograph. Nano-iron particles were observed under a FEI Quanta 200 FEG environmental scanning electron microscope (ESEM). Results The size of the particles was in the range of 10-100 nm. The nano-iron particles could reduce 4-CP effectively. The initial concentration of 4-CP increased with the decrease of the relative degradation rate, whereas the reduced amount of 4-CP increased. Temperature could influence both the dechlorination rate and the reaction pathway. Moreover, the stability and durability of nanoscale Fe^0 was evaluated through batch studies over extended periods of time. Conclusion The nanoscale Fe^0 can be used for sustainable treatment of contaminants in groundwater.Objective To investigate reductive dechlorination of 4-chlorophenol (4-CP) by nanoscale Fe^0 under different conditions. Methods Nanoscale Fe^0 was synthesized by using reductive method. 4-CP and its intermediate products were analyzed by HPLC. Chlorine ion was quantified with DX-100 ion chromatograph. Nano-iron particles were observed under a FEI Quanta 200 FEG environmental scanning electron microscope (ESEM). Results The size of the particles was in the range of 10-100 nm. The nano-iron particles could reduce 4-CP effectively. The initial concentration of 4-CP increased with the decrease of the relative degradation rate, whereas the reduced amount of 4-CP increased. Temperature could influence both the dechlorination rate and the reaction pathway. Moreover, the stability and durability of nanoscale Fe^0 was evaluated through batch studies over extended periods of time. Conclusion The nanoscale Fe^0 can be used for sustainable treatment of contaminants in groundwater.

关 键 词:Nanoscale iron 4-CP PHENOL DECHLORINATION Priority pollutant 

分 类 号:X705[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象